"Earned Schedule" The Concept, Initial Evaluation and Potential Benefits

15th IPM Conference Tysons Corner, Virginia 17th November 2003

Walt Lipke Software Division Tinker AFB, OK

Kym Henderson Education Director PMI Sydney, Australia Chapter

Purpose

- To describe
 - The concept and formulation of Earned Schedule and the Earned Schedule Indicators
 - Describe the findings of an evaluation of the retrospective application of Earned Schedule
- Outline the potential application and benefits of Earned Schedule to
 - EVM practitioners
 - Other Performance Management stakeholders

Overview

- The Earned Schedule Concept and Theory Walt
 - EVM Basics
 - The Problem
- The Earned Schedule Solution Walt
 - The Earned Schedule (ES) metric
 - Schedule Variance (time): SV(t)
 - Schedule Performance Index (time): SPI(t)
- Retrospective Evaluation Kym
 - Early Finish projects
 - Late Finish projects
- Application and Potential Benefits Kym
- Summary & Observations Kym

Background to Earned Schedule Concept Development

- Software Division at the Oklahoma City Air Logistics Center
 - SEI SW-CMM Level 4 achieved Nov 1996
 - Level 4 evolved ⇔ Statistical Process Control (SPC)
 - SPC ⇔ Defect Prevention (SEI SW-CMM Level 5)
 - SPC applied to EVM indicators
 - Several statistical applications created
 - SV and SPI flaw is intolerable for reliable statistics
 - Solution needed to "save" the statistical applications

Earned Value Basics

Time

5

"Earned Schedule" The Concept, Initial Evaluation and Potential Benefits 15th IPM Conference Tysons Corner, Virginia, 17th Nov 2003

Earned Value Cost and Schedule Variances

Note: Project completion was scheduled for Jan 02, but completed Apr 02.

"Earned Schedule" The Concept, Initial Evaluation and Potential Benefits 15th IPM Conference Tysons Corner, Virginia, 17th Nov 2003

Earned Value Cost and Schedule Performance Indices

Note: Project completion was scheduled for Jan 02, but completed Apr 02.

"Earned Schedule" The Concept, Initial Evaluation and Potential Benefits 15th IPM Conference Tysons Corner, Virginia, 17th Nov 2003

Earned Schedule: The Concept

15th IPM Conference Tysons Corner, Virginia, 17th Nov 2003

Earned Schedule: The Formulae

• EScum is the:

Number of completed BCWS time increments BCWP exceeds + the fraction of the incomplete BCWS increment

EScum = C + I where:

C = number of time increments for $BCWP \ge BCWS$

 $I = (BCWP - BCWSc) / (BCWSc_{+1} - BCWSc)$

• ESperiod(n) = EScum(n) - EScum(n-1)

Earned Schedule: The Schedule Indicators

The Earned Schedule Indicators

• Schedule Variance (time):

SV(t) = ES - AT, where AT = actual time

• Schedule Performance Index (time):

SPI(t) = ES / AT

- Key Points:
 - ES Indicators constructed to behave in an analogous manner to the EVM Cost Indicators, CV and CPI
 - SV(t) and SPI(t) not constrained by BCWS calculation reference
 - SV(t) and SPI(t) provide <u>duration</u> based measures of schedule performance

Schedule Variance Comparison

15th IPM Conference Tysons Corner, Virginia, 17th Nov 2003

© Walter Lipke

Schedule Performance Index Comparison

"Earned Schedule" The Concept, Initial Evaluation and Potential Benefits 15th IPM Conference Tysons Corner, Virginia, 17th Nov 2003

ES vs EVM Schedule Indicators

Earned Schedule	Earned Value
SV(t) and SPI(t) valid for entire project, including early and late finish	SV(\$) and SPI(\$) validity limited to early finish projects
Duration based predictive capability analogous to EVMs cost based indicators	Limited prediction capability No predictive capability after planned completion date exceeded
Facilitates Cost – Schedule Management (using EVM and ES)	EVM Management focused to Cost

Retrospective Application Study Method

- 1. Calculate the time phased ES measures and metrics
- 2. Incorporate SV(t)
 - a) Into a standard EVM CV and SV(\$) graphical report on a secondary y axis
 - b) Compare the behaviour of SV(t) with SV(\$)
- 3. Incorporate SPI(t)
 - a) Into a standard EVM CPI and SPI(\$) graphical report
 - b) Compare the behaviour of SPI(t) with SPI(\$)
- 4. Analyse the results obtained
- 5. Consider additional applications for ES

Late Finish Project: SV(\$) and SV(t)

Late Finish Project Analysis

- No EVM data prior to week 11
- SV(\$) and SV(t) show strong correlation until week 19
- Week 20 (The week of the project's scheduled completion)
 - Client delay halted project progress until resolution in Week 26
- SV(\$) static at -\$17,500 in spite of schedule delay

Before trending to \$0 at project completion

- SV(t) correctly calculates and displays
 - Week on week schedule delay
 - Project -14 week schedule delay at completion

Conclusion

 SV(t) provides greater management utility than SV(\$) for portraying and analysing schedule performance

Late Finish Project: SPI(\$) and SPI(t)

SV(\$) and SV(t) conclusions consistent for SPI(\$) and SPI(t)

"Earned Schedule" The Concept, Initial Evaluation and Potential Benefits 15th IPM Conference Tysons Corner, Virginia, 17th Nov 2003

Early Finish Project: SV(\$) and SV(t)

Early Finish Project Analysis

- This project completed 3 weeks ahead of schedule
 - In spite of externally imposed delay between weeks 16 and 19
- SV(\$) and SV(t) show strong correlation over life of project
 - Including the delay period
 - SV(t)'s advantage is calculating delay as a measure of <u>duration</u>

With Early Finish projects

 ES metrics SV(t) and SPI(t) have behaved consistently with their historic EVM counterparts

Conclusion

 SV(t) provides greater management utility than SV(\$) for portraying and analysing schedule performance

Early Finish Project: SPI(\$) and SPI(t)

SV(\$) and SV(t) conclusions consistent for SPI(\$) and SPI(t)

"Earned Schedule" The Concept, Initial Evaluation and Potential Benefits 15th IPM Conference Tysons Corner, Virginia, 17th Nov 2003

Analysis Summary

 The analysis and conclusions described are consistent for the projects summarised in the following table

	Project	Category	Budget at	Cost at	Planned	Actual
			Complete	Complete	Duration	Duration
			\$ Australian		Weeks	
1	Commercial IT Infrastructure	Late Finish	\$158,899	\$307,738	20	34
	Expansion Project Phase 1					
	[Table Note 1]					
2	Commercial IT Infrastructure	Early Finish	\$112,000	\$53,745	25	22
	Expansion Project Phases 2 & 3					
	[Table Note 2]					
3	Commercial IT Infrastructure	Early Finish	\$270,899	\$361,483	49	46
	Expansion Project Phases 1, 2 & 3 total					
	(overall project) [Table Note 3]					
4	Commercial IT Software Development	Early Finish	\$145,085	\$143,575	19	13
	Project					
5	Commercial IT Infrastructure	Late Finish	\$2,426,094	\$3,870,048	65	83
	Replacement Project (Re-baselined)		(\$3,819,570)		(81)	
	[Table Note 4]					
6	Commercial IT Software Interface	Late Finish	\$219,200	\$409,470	9	23
	Development sub-project (part of #5)					

Other Benefits of Earned Schedule: Independent Estimates of Duration (IED) and Completion Date (IECD)

Calculation of Independent Estimate of Duration (IED)

IED = Planned Duration / SPI(t)

Independent Estimate of Completion Date (IECD)

IECD = Project Start Date + IED

- Behaviour of IED and IECD is analogous to the EVM cost equivalent, the Independent Estimate at Compete (IEAC)
- Potential Benefits
 - Sanity checking "real schedule" measures
 - Detection of schedule performance trends over time

Other Benefits of Earned Schedule: Independent Estimates of Duration (IED)

"Earned Schedule" The Concept, Initial Evaluation and Potential Benefits 15th IPM Conference Tysons Corner, Virginia, 17th Nov 2003

Other Benefits of Earned Schedule: Independent Estimates of Completion Date (IECD)

Another Potential Benefit of Earned Schedule: Use of SPI(t) as an IEAC Performance Factor

Christensen, citing Fleming and Koppelman suggests that SPI[(\$)] "is useful for identifying schedule problems, especially when used with critical path information" and

"Because schedule problems are often resolved by additional spending, an adverse SPI[(\$)] is also predictive of later cost problems."

- SPI(t) may offer greater utility as a performance factor for IEAC calculations, particularly when compared to SPI(\$)
 Due to SPI(t) validity for both early and late finish projects
- More research is needed to confirm this

"Earned Schedule" The Concept, Initial Evaluation and Potential Benefits 15th IPM Conference Tysons Corner, Virginia, 17th Nov 2003

Source: The Costs And Benefits Of The Earned Value Management Process; David S. Christensen, Ph.D. Acquisition Quarterly — Fall 1998 http://www.dau.mil/pubs/arq/98arq/chrisevm.pdf

Another Potential Benefit of Earned Schedule: Example Use of SPI(t) as an IEAC Performance Factor

"Earned Schedule" The Concept, Initial Evaluation and Potential Benefits 15th IPM Conference Tysons Corner, Virginia, 17th Nov 2003

ES vs EVM Schedule Indicators Recap

Earned Schedule	Earned Value
SV(t) and SPI(t) valid for entire project, including early and late finish	SV(\$) and SPI(\$) validity limited to early finish projects
Duration based predictive capability analogous to EVMs cost based indicators	Limited prediction capability No predictive capability after planned completion date exceeded
Facilitates Cost – Schedule Management (using EVM and ES)	EVM Management focused to Cost

Research to Date Demonstrates

 SV(\$) and SPI(\$) have predictive utility for Early Finish projects but <u>lose</u> predictive utility for Late Finish projects

When predictive utility is needed most

- SV(t) and SPI(t) have predictive utility for both Early <u>and</u> Late Finish projects
- ES measures and metrics are expected to have
 - Utility similar to the EVM cost based counterparts
 - The recognized strength of EVM
 - Greater utility than historic EVM based schedule equivalents
- By extending EVM to include valid <u>duration</u> based measures of schedule performance
 - ES may be a "breakthrough" extension to Earned Value theory

Earned Schedule: The Way Forward

Additional research is required

- More project data for retrospective analysis, especially for large scale projects
- Data from Earned Schedule "early adopters"
- Subject to additional confirmatory research findings:
 - Earned Schedule enhancements into EVM software packages
 - Inclusion of Earned Schedule into EVM practice standards
 - Acceptance of Earned Schedule as a valid extension of EVM

References

 Lipke, Walter, <u>Schedule is Different</u>, The Measurable News, March and Summer 2003

http://sydney.pmichapters-australia.org.au/programs/customer/v_itemcatg.asp?P=31&ICID=105&FRF=n&

 Henderson, Kym, <u>Earned Schedule: A Breakthrough</u> <u>Extension to Earned Value Theory? A Retrospective</u> <u>Analysis of Real Project Data</u>, The Measurable News, Summer 2003

http://sydney.pmichapters-australia.org.au/programs/customer/v_itemcatg.asp?P=31&ICID=105&FRF=n&

Presenter's Contact Details

Walt Lipke

Phone: (405) 736-3341 Fax: (405) 736-3345 Email: <u>walter.lipke@tinker.af.mil</u>

Address: OCALC/ENS 8745 Entrance Rd A Bldg 3333 Room 140 Tinker AFB, OK 73145-3312

Kym Henderson

Phone: 61 414 428 537 Fax: 61 (2) 8394 9295 Email: <u>kym.henderson@froggy.com.au</u> Address: PO Box 687 RANDWICK NSW 2031 AUSTRALIA